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1. Definitions of Sup and Inf

Recall the following definitions.
Let S ⊂ R and let x ∈ R.
We say that x = maxS if
(a) x ≥ s for every s ∈ S;
(b) x ∈ S.
We say that x = minS if
(a) x ≤ s for every s ∈ S;
(b) x ∈ S.
We say that x = sup S if
(a) x ≥ s for every s ∈ S;
(b) a ≥ s for every s ∈ S ⇒ a ≥ s.
We say that x = sup S if
(a) x ≥ s for every s ∈ S;
(b) a ≥ s for every s ∈ S ⇒ a ≥ s.

2. Examples of Sup and Inf

Example 1. Let S be a nonempty bounded subsets of R. Show that inf S ≤
supS. What can be said if inf S = sup S?

Proof. Since S is nonempty, there exists s ∈ S. Then inf S ≤ s and s ≤ supS.
By transitivity of order, inf S ≤ supS.

If inf S = sup S, then S contains only one element. �

Example 2. Let S and T be nonempty bounded subsets of R. Show if S ⊂ T ,
the inf T ≤ inf S ≤ supS ≤ supT .

Proof. Let s ∈ S. Then s ∈ T , so inf T ≤ s. Thus inf T is a lower bound for
S, so inf T ≤ inf S. Similarly, supS ≤ supT . That inf S ≤ supS is true is
above. �
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Example 3. Let S and T be nonempty bounded subsets of R. Show that
sup(S ∪ T ) = max{supS, supT}.

Proof. Either max{supS, supT} = supS or max{supS, supT} = sup T .
Suppose that max{supS, supT} = supS; in this case, supT ≤ supS. Since

S ⊂ S ∪ T , we have supS ≤ sup(S ∪ T ) by part (a).
Now let x ∈ S ∪ T . Then x is either in S or T . If x ∈ S, then x ≤ supS.

If x ∈ T , then x ≤ supT ≤ supS. Thus supS is an upper bound for S ∪ T .
Therefore sup(S ∪ T ) ≤ supS.

Since sup S ≤ sup(S ∪ T ) and sup(S ∪ T ) ≤ supS, it follows that supS =
sup(S ∪ T ).

Finally, if max{supS, supT} = sup T , the above proof is valid, with the roles
of S and T reversed. �

Example 4. Show that if a > 0 then there exists n ∈ N such that 1
n < a < n.

Proof. Let b = max{a, 1
a}. By the Archimedian property, there exists n ∈ N

such that n > b. Since a ≤ b, we have a < n. Also since 1
a ≤ b, we have 1

a < n.
Thus by Theorem 3.2.(vii), we have 1

n < a. �

Example 5. Let a, b ∈ R such that a < b. Show that there exist infinitely many
rational numbers between a and b.

Proof. Suppose not. The the set S = (a, b) ∩ Q is finite, so it has a minimum,
say c = minS. But then Theorem 4.7 tells us that there exists d ∈ Q such that
a < d < c. But then d < b, so d ∈ S. This contradicts that c = minS. �

Example 6. Let A and B be nonempty bounded subsets of R and let

S = {x ∈ R | x = a + b for some a ∈ A, b ∈ B}.
(a) Show that supS = sup A + supB.
(b) Show that inf S = inf A + inf B.

Lemma 1. Let A ⊂ R be bounded above and suppose that x < supA. Then
there exists a ∈ A such that x < a.

Proof of Lemma. Suppose not; then for every a ∈ A, we have a ≤ x. Then x is
an upper bound for A, so supA ≤ x, contrary to our assumption on x. �

Proof of Example. We prove (a); the proof for (b) is symmetric. It suffices to
show that supS ≤ supA + supB and that supA + supB ≤ supS.

Let s ∈ S. Then s = a + b for some a ∈ A and b ∈ B. Then a ≤ supA and
b ≤ supB, so a + b ≤ supA + supB. Thus supA + supB is an upper bound for
S, so supS ≤ supA + supB.

Suppose that supS < supA + supB. Then supS − supB < supA, so there
exists a ∈ A such that supS− supB < a. From this, supS−a < supB, so there
exists b ∈ B such that supS − a < b. Let s = a + b ∈ S. We have supS < s, a
contradiction. Therefore supA + supB ≤ supS. �
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3. Arithmetic of Sequences

Lemma 2. Let a, b ∈ R. Then |ab| = |a||b|.

Reason. Break this into four cases and see the result. �

Proposition 1. Let {sn}∞n=1 be a convergent sequence of real numbers, and let
k ∈ R. Then

k lim
n→∞

sn = lim
n→∞

(ksn).

Proof. Let ε > 0, and set s = limn→∞ sn. Since sn → s, there exists N ∈ Z+

such that
|sn − s| < ε

k
.

Then
|ksn − ks| < ε.

�

Proposition 2. Let {sn}∞n=1 and {tn}∞n=1 be convergent sequences of real num-
bers. Then the sequence {sn + tn}∞n=1 converges, and

lim
n→∞

(sn + tn) = lim
n→∞

sn + lim
n→∞

tn.

Proposition 3. Let {sn}∞n=1 and {tn}∞n=1 be convergent sequences of real num-
bers. Then the sequence {sntn}∞n=1 converges, and

lim
n→∞

(sntn) = ( lim
n→∞

sn)( lim
n→∞

tn).

Proposition 4. Let {sn}∞n=1 be a convergent sequence of nonzero real numbers.
Then

1
limn→∞ sn

= lim
n→∞

(
1
sn

).

Lemma 3. Let {sn}∞n=1 be a sequence of nonzero real numbers such that
limn→∞ |sn| converges to a positive real number. Then there exists m > 0 such
that |sn| > m for all n.
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