PRINCIPLES OF ANALYSIS
LECTURE 9 - ARITHMETIC OF SEQUENCES

PAUL L. BAILEY

1. DEFINITIONS OF SUP AND INF

Recall the following definitions.
Let S C R and let z € R.
We say that £ = max S if

(a) = > s for every s € S,

(b) z € S.
We say that £ = min S’ if

(a) = < s for every s € S,

(b) z€5.
We say that © = sup S if

(a) = > s for every s € S,

(b) a > s forevery s€ S = a>s.

We say that © = sup S if

(a) x > s for every s € S
(b) a > s forevery s€ S = a>s.

2. EXAMPLES OF SUP AND INF

Example 1. Let S be a nonempty bounded subsets of R. Show that inf S <
sup S. What can be said if inf S = sup S7

Proof. Since S is nonempty, there exists s € S. Then inf § < s and s < supS.
By transitivity of order, inf S < sup S.
If inf S = sup S, then S contains only one element. O

Example 2. Let S and T be nonempty bounded subsets of R. Show if S C T,
the inf 7" <inf S <sup S <supT.

Proof. Let s € S. Then s € T, so infT < s. Thus inf T is a lower bound for
S, so infT < infS. Similarly, supS < sup7. That infS < supS is true is
above. O
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Example 3. Let S and T be nonempty bounded subsets of R. Show that
sup(S UT) = max{sup S,supT'}.

Proof. Either max{sup S,supT} = sup S or max{sup S,sup7T'} =supT.

Suppose that max{sup S,supT} = sup S; in this case, supT < supS. Since
S C SUT, we have sup S < sup(SUT) by part (a).

Now let x € SUT. Then x is either in S or T. If x € S, then x < sup S.
If x € T, then x < supT < supS. Thus sup S is an upper bound for SUT.
Therefore sup(S UT) < supS.

Since sup S < sup(SUT) and sup(SUT) < supS, it follows that sup S =

sup(SUT).
Finally, if max{sup S,supT} = sup T, the above proof is valid, with the roles
of S and T reversed. O

Example 4. Show that if a > 0 then there exists n € N such that % <a<n.

Proof. Let b = max{a, %} By the Archimedian property, there exists n € N
such that n > b. Since a < b, we have a < n. Also since % < b, we have % <n.
Thus by Theorem 3.2.(vii), we have + < a. O

Example 5. Let a,b € R such that a < b. Show that there exist infinitely many
rational numbers between a and b.

Proof. Suppose not. The the set S = (a,b) N Q is finite, so it has a minimum,
say ¢ = min S. But then Theorem 4.7 tells us that there exists d € Q such that
a < d<c Butthen d<b, sodeS. This contradicts that ¢ = min S. O

Example 6. Let A and B be nonempty bounded subsets of R and let
S={reR|z=a+bfor someac Abe B}.

(a) Show that sup S = sup A + sup B.
(b) Show that inf S = inf A + inf B.

Lemma 1. Let A C R be bounded above and suppose that x < sup A. Then
there exists a € A such that x < a.

Proof of Lemma. Suppose not; then for every a € A, we have a < x. Then z is
an upper bound for A, so sup A < x, contrary to our assumption on x. O

Proof of Example. We prove (a); the proof for (b) is symmetric. It suffices to
show that sup S < sup A + sup B and that sup A + sup B < sup S.

Let s € S. Then s = a+ b for some a € A and b € B. Then a < sup A and
b<supB,soa+b<supA-+supB. Thus sup A + sup B is an upper bound for
S, sosup S < sup A + sup B.

Suppose that sup.S < sup A + sup B. Then sup.S — sup B < sup A4, so there
exists a € A such that sup S —sup B < a. From this, sup S —a < sup B, so there
exists b € B such that supS —a <b. Let s=a+be€ S. We have supS < s, a
contradiction. Therefore sup A + sup B < sup S. O



3. ARITHMETIC OF SEQUENCES
Lemma 2. Let a,b € R. Then |ab| = |a||b|.
Reason. Break this into four cases and see the result. O

Proposition 1. Let {s,}22, be a convergent sequence of real numbers, and let
ke R. Then
k lim s, = lim (ks,).
n—oo n—oo

Proof. Let € > 0, and set s = lim,_,o S,. Since s, — s, there exists N € ZT
such that .

[sn — 8| < T
Then

|ks, — ks| < e.

O
Proposition 2. Let {s,}>2, and {t,}7, be convergent sequences of real num-
bers. Then the sequence {sy, + t,}52, converges, and
lim (s, +t,) = lim s, + lim ¢,.
n—oo n—o0 n—oo
Proposition 3. Let {s,}2, and {t,}°, be convergent sequences of real num-
bers. Then the sequence {sntn 52, converges, and
lim (spt,) = (lim s,)( lim t,).
n—oo n—oo n—oo
Proposition 4. Let {s,}5°, be a convergent sequence of nonzero real numbers.

Then )

—— = lim (—).

lim, .o 8y n—oo 8,
Lemma 3. Let {s,}32, be a sequence of nonzero real numbers such that
lim,, o |Sn| converges to a positive real number. Then there exists m > 0 such
that |s,| > m for all n.
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