PRINCIPLES OF ANALYSIS LECTURE 9 - ARITHMETIC OF SEQUENCES

PAUL L. BAILEY

1. Definitions of Sup and Inf

Recall the following definitions.

Let $S \subset \mathbb{R}$ and let $x \in \mathbb{R}$. We say that $x = \max S$ if (a) $x \ge s$ for every $s \in S$; (b) $x \in S$. We say that $x = \min S$ if (a) $x \le s$ for every $s \in S$; (b) $x \in S$. We say that $x = \sup S$ if (a) $x \ge s$ for every $s \in S$; (b) $a \ge s$ for every $s \in S \Rightarrow a \ge s$. We say that $x = \sup S$ if (a) $x \ge s$ for every $s \in S$; (b) $a \ge s$ for every $s \in S$; (c) $a \ge s$ for every $s \in S$; (c) $a \ge s$ for every $s \in S$; (c) $a \ge s$ for every $s \in S$; (c) $a \ge s$ for every $s \in S$; (c) $a \ge s$ for every $s \in S \Rightarrow a \ge s$.

2. Examples of Sup and Inf

Example 1. Let S be a nonempty bounded subsets of \mathbb{R} . Show that $\inf S \leq \sup S$. What can be said if $\inf S = \sup S$?

Proof. Since S is nonempty, there exists $s \in S$. Then $\inf S \leq s$ and $s \leq \sup S$. By transitivity of order, $\inf S \leq \sup S$.

If $\inf S = \sup S$, then S contains only one element. \Box

Example 2. Let S and T be nonempty bounded subsets of \mathbb{R} . Show if $S \subset T$, the inf $T \leq \inf S \leq \sup S \leq \sup T$.

Proof. Let $s \in S$. Then $s \in T$, so $\inf T \leq s$. Thus $\inf T$ is a lower bound for S, so $\inf T \leq \inf S$. Similarly, $\sup S \leq \sup T$. That $\inf S \leq \sup S$ is true is above.

Date: September 17, 2003.

Example 3. Let *S* and *T* be nonempty bounded subsets of \mathbb{R} . Show that $\sup(S \cup T) = \max\{\sup S, \sup T\}$.

Proof. Either $\max\{\sup S, \sup T\} = \sup S$ or $\max\{\sup S, \sup T\} = \sup T$.

Suppose that $\max\{\sup S, \sup T\} = \sup S$; in this case, $\sup T \leq \sup S$. Since $S \subset S \cup T$, we have $\sup S \leq \sup(S \cup T)$ by part (a).

Now let $x \in S \cup T$. Then x is either in S or T. If $x \in S$, then $x \leq \sup S$. If $x \in T$, then $x \leq \sup T \leq \sup S$. Thus $\sup S$ is an upper bound for $S \cup T$. Therefore $\sup(S \cup T) \leq \sup S$.

Since $\sup S \leq \sup(S \cup T)$ and $\sup(S \cup T) \leq \sup S$, it follows that $\sup S = \sup(S \cup T)$.

Finally, if $\max\{\sup S, \sup T\} = \sup T$, the above proof is valid, with the roles of S and T reversed.

Example 4. Show that if a > 0 then there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$.

Proof. Let $b = \max\{a, \frac{1}{a}\}$. By the Archimedian property, there exists $n \in \mathbb{N}$ such that n > b. Since $a \leq b$, we have a < n. Also since $\frac{1}{a} \leq b$, we have $\frac{1}{a} < n$. Thus by Theorem 3.2.(vii), we have $\frac{1}{n} < a$.

Example 5. Let $a, b \in \mathbb{R}$ such that a < b. Show that there exist infinitely many rational numbers between a and b.

Proof. Suppose not. The set $S = (a, b) \cap \mathbb{Q}$ is finite, so it has a minimum, say $c = \min S$. But then Theorem 4.7 tells us that there exists $d \in \mathbb{Q}$ such that a < d < c. But then d < b, so $d \in S$. This contradicts that $c = \min S$. \Box

Example 6. Let A and B be nonempty bounded subsets of \mathbb{R} and let

 $S = \{ x \in \mathbb{R} \mid x = a + b \text{ for some } a \in A, b \in B \}.$

(a) Show that $\sup S = \sup A + \sup B$.

(b) Show that $\inf S = \inf A + \inf B$.

Lemma 1. Let $A \subset \mathbb{R}$ be bounded above and suppose that $x < \sup A$. Then there exists $a \in A$ such that x < a.

Proof of Lemma. Suppose not; then for every $a \in A$, we have $a \leq x$. Then x is an upper bound for A, so $\sup A \leq x$, contrary to our assumption on x. \Box

Proof of Example. We prove (a); the proof for (b) is symmetric. It suffices to show that $\sup S \leq \sup A + \sup B$ and that $\sup A + \sup B \leq \sup S$.

Let $s \in S$. Then s = a + b for some $a \in A$ and $b \in B$. Then $a \leq \sup A$ and $b \leq \sup B$, so $a + b \leq \sup A + \sup B$. Thus $\sup A + \sup B$ is an upper bound for S, so $\sup S \leq \sup A + \sup B$.

Suppose that $\sup S < \sup A + \sup B$. Then $\sup S - \sup B < \sup A$, so there exists $a \in A$ such that $\sup S - \sup B < a$. From this, $\sup S - a < \sup B$, so there exists $b \in B$ such that $\sup S - a < b$. Let $s = a + b \in S$. We have $\sup S < s$, a contradiction. Therefore $\sup A + \sup B \le \sup S$.

Lemma 2. Let $a, b \in \mathbb{R}$. Then |ab| = |a||b|.

Reason. Break this into four cases and see the result.

Proposition 1. Let $\{s_n\}_{n=1}^{\infty}$ be a convergent sequence of real numbers, and let $k \in \mathbb{R}$. Then

$$k\lim_{n\to\infty}s_n=\lim_{n\to\infty}(ks_n).$$

Proof. Let $\epsilon > 0$, and set $s = \lim_{n \to \infty} s_n$. Since $s_n \to s$, there exists $N \in \mathbb{Z}^+$ such that

Then

$$|s_n - s| < \frac{\epsilon}{k}.$$
$$|ks_n - ks| < \epsilon.$$

Proposition 2. Let $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ be convergent sequences of real numbers. Then the sequence $\{s_n + t_n\}_{n=1}^{\infty}$ converges, and

$$\lim_{n \to \infty} (s_n + t_n) = \lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n.$$

Proposition 3. Let $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ be convergent sequences of real numbers. Then the sequence $\{s_nt_n\}_{n=1}^{\infty}$ converges, and

$$\lim_{n \to \infty} (s_n t_n) = (\lim_{n \to \infty} s_n)(\lim_{n \to \infty} t_n).$$

Proposition 4. Let $\{s_n\}_{n=1}^{\infty}$ be a convergent sequence of nonzero real numbers. Then

$$\frac{1}{\lim_{n \to \infty} s_n} = \lim_{n \to \infty} (\frac{1}{s_n}).$$

Lemma 3. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of nonzero real numbers such that $\lim_{n\to\infty} |s_n|$ converges to a positive real number. Then there exists m > 0 such that $|s_n| > m$ for all n.

Department of Mathematics and CSCI, Southern Arkansas University $E\text{-}mail\ address:\ plbailey@saumag.edu$